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Introduction

The simultaneous transmission of both quantum and
classical information over a quantum channel was initially
investigated in [2005] from an information theoretic point of
view, and followed up by many others (see, e.g. Hsieh and
Wilde [2010a,b], Yard [2005]).

Advantage compared to independent solutions?
For the finite length case: in Kremsky et al. [2008], the
authors consider the problem in the context of so-called
entanglement-assisted codes. The examples given in
Kremsky et al. [2008], e.g. [[9,1 : 2,3]], however, fail to
demonstrate an advantage compared to stabilizer quantum
codes. (Even [[8,3,3]] exists)



Introduction Background and Notations Conditions Code Construction LP Bound Results Summary Reference

Introduction

The simultaneous transmission of both quantum and
classical information over a quantum channel was initially
investigated in [2005] from an information theoretic point of
view, and followed up by many others (see, e.g. Hsieh and
Wilde [2010a,b], Yard [2005]).
Advantage compared to independent solutions?

For the finite length case: in Kremsky et al. [2008], the
authors consider the problem in the context of so-called
entanglement-assisted codes. The examples given in
Kremsky et al. [2008], e.g. [[9,1 : 2,3]], however, fail to
demonstrate an advantage compared to stabilizer quantum
codes. (Even [[8,3,3]] exists)



Introduction Background and Notations Conditions Code Construction LP Bound Results Summary Reference

Introduction

The simultaneous transmission of both quantum and
classical information over a quantum channel was initially
investigated in [2005] from an information theoretic point of
view, and followed up by many others (see, e.g. Hsieh and
Wilde [2010a,b], Yard [2005]).
Advantage compared to independent solutions?
For the finite length case: in Kremsky et al. [2008], the
authors consider the problem in the context of so-called
entanglement-assisted codes. The examples given in
Kremsky et al. [2008], e.g. [[9,1 : 2,3]], however, fail to
demonstrate an advantage compared to stabilizer quantum
codes. (Even [[8,3,3]] exists)



Introduction Background and Notations Conditions Code Construction LP Bound Results Summary Reference

Introduction

Here we study codes for simultaneous transmission of quantum
and classical information, which we refer to as “hybrid
quantum codes” or just “hybrid codes”.

Using the framework
of stabilizer codes Calderbank et al. [1998] and its
generalization, that is,

(a) Codeword stabilized (CWS) codes Cross et al. [2009]
(b) Union stabilizer codes Grassl and Rötteler [2008]

We obtain hybrid codes that have advantage over the best
known quantum codes for transmitting quantum information
only for up to 11 qubits by exhaustive or randomized search.

A general construction⇒ up to 34 qubits. (See arXiv
version: 1701:06963)
Linear program bound on n, k ,m,d
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Background and Notations

Our discussion is based on the theory of stabilizer quantum
codes and its connection to classical error-correcting codes
(see, e.g., Calderbank et al. [1998]). We use the following
notations.

((n,K ,d))q

[[n, k ,d ]]q

(n,M,d)q

[n,m,d ]q

[[n, k :m,d ]]q

((n,K :M,d))q
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Trivial Construction

((n,KM,d))q ⇒ ((n,K :M,d))q

[[n, k :m,d ]]q ⇒ [[n, k − 1:m + 1,d ]]q

[[n1, k1,d ]]q + [n2,m2,d ]q ⇒ [[n1 + n2, k1:m2,d ]]q

Our goal is to find codes that have better parameters than the
codes that can be obtained by these trivial constructions.
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Error Correction Conditions

A hybrid quantum code C = ((n,K :M))q can be described by a
collection

{C(ν) : ν = 1, . . . ,M}

of M quantum codes C(ν) = ((n,K ,d))q. The classical
information ν determines which quantum code C(ν) is used to
encode the quantum information.
In the following, we will use Greek letters when referring to
classical information. Assume that {|c(ν)

i 〉 : i = 1, . . . ,K} is an
orthonormal basis for the code C(ν).
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Error Correction Conditions

In order to be able to correct the linear span of error operators
{Ek : k = 1,2, . . .}, each of the codes C(ν) has to obey the
Knill-Laflamme conditions Knill and Laflamme [1997], i. e.,

〈c(ν)
i |E

†
kE`|c

(ν)
j 〉 = α

(ν)
k` δij .

Note that the constants α(ν)
k` ∈ C may depend on the classical

information ν. To retrieve the classical information ν, one has to
be able to perfectly distinguish the states |c(ν)

i 〉 and |c(µ)
j 〉 for

ν 6= µ and arbitrary i and j after an error.

〈c(ν)
i |E

†
kE`|c

(µ)
j 〉 = 0, for µ 6= ν.
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Error Correction Conditions

Theorem
A hybrid quantum code
C = ((n,K :M))q with
orthonormal basis states
{|c(ν)

i 〉 : i = 1, . . . ,K , ν =
1, . . . ,M} can correct all
errors {Ek : k = 1,2, . . .}
if and only if

〈c(ν)
i |E

†
kE`|c

(µ)
j 〉 = α

(ν)
k` δijδµν .

Discussions:
When α(ν)

k` do not depend on
ν, condition reduces to
Knill-Laflamme condition for a
quantum code C = ((n,KM))q.

For hybrid codes with better
parameters, there should be
at least a pair ν, µ and errors
Ek ,E` such that α(ν)

k` 6= α
(µ)
k` .

When the error operators Ek

are unitary, α(ν)
kk = 1. Then

α
(ν)
k` 6= 0 for some ν and k 6= `,

which suggests that some of
the codes C(ν) might be taken
to be degenerate codes.
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Code Construction

We outline the construction of hybrid quantum codes in the
framework of CWS codes/union stabilizer codes. We start with
a quantum code C(0) = ((n,K ,d))q which is a CWS code that
might even be a stabilizer code C(0) = [[n, k ,d ]]q.

The codes
C(ν) are chosen as images of the seed code C(0) under tensor
products of generalized Pauli matrices, denoted by tν . Thus we
have

C(ν) = tνC(0)

with {tν : ν = 1, . . .M} a set of M translation operators. The
seed code C(0) is chosen to be degenerate.
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Code Construction

Next we consider the classical codes associated with the
quantum codes C(ν).

For simplicity, we first consider the special
case of stabilizer codes.

(a) S ⇒ self orthogonal classical code C0.
(b) C0 ⊆ C∗0 ⇒ N

d = min{wgt c : c ∈ C∗0 \ C0} > min{wgt c : c ∈ C∗0 \ {0}}.

The codes C(ν) = tνC(0) are associated with cosets C∗0 + tν of
the normalizer code C∗0 ,
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Code Construction

When the cosets C∗0 + tν and C∗0 + tµ are different, then the
codes C(ν) and C(µ) will be orthogonal to each other. The hybrid
code C is associated with the classical code

C∗ =
M⋃
ν=1

C∗0 + tν .

When the union of the codes is an additive code, the hybrid
quantum code will be a stabilizer code.
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Code Construction

Note that, in general, we have the chain of classical codes

C ≤ C0 ≤ C∗0 ≤ C∗.

The minimum distance of the quantum code associated with C∗

is computed as

d ′ = min{wgt c : c ∈ C∗ \ C}.

It turns out that the minimum distance of a hybrid code
associated with the codes C0 ≤ C∗ is given by

d = min{wgt c : c ∈ C∗ \ C0}.

Note that the minimum(d) is taken over a smaller set compared
to d ′, as C ≤ C0, and hence d ≥ d ′.



Introduction Background and Notations Conditions Code Construction LP Bound Results Summary Reference

Code Construction

Note that, in general, we have the chain of classical codes

C ≤ C0 ≤ C∗0 ≤ C∗.

The minimum distance of the quantum code associated with C∗

is computed as

d ′ = min{wgt c : c ∈ C∗ \ C}.

It turns out that the minimum distance of a hybrid code
associated with the codes C0 ≤ C∗ is given by

d = min{wgt c : c ∈ C∗ \ C0}.

Note that the minimum(d) is taken over a smaller set compared
to d ′, as C ≤ C0, and hence d ≥ d ′.



Introduction Background and Notations Conditions Code Construction LP Bound Results Summary Reference

Code Construction

Note that, in general, we have the chain of classical codes

C ≤ C0 ≤ C∗0 ≤ C∗.

The minimum distance of the quantum code associated with C∗

is computed as

d ′ = min{wgt c : c ∈ C∗ \ C}.

It turns out that the minimum distance of a hybrid code
associated with the codes C0 ≤ C∗ is given by

d = min{wgt c : c ∈ C∗ \ C0}.

Note that the minimum(d) is taken over a smaller set compared
to d ′, as C ≤ C0, and hence d ≥ d ′.



Introduction Background and Notations Conditions Code Construction LP Bound Results Summary Reference

Code Construction

Note that, in general, we have the chain of classical codes

C ≤ C0 ≤ C∗0 ≤ C∗.

The minimum distance of the quantum code associated with C∗

is computed as

d ′ = min{wgt c : c ∈ C∗ \ C}.

It turns out that the minimum distance of a hybrid code
associated with the codes C0 ≤ C∗ is given by

d = min{wgt c : c ∈ C∗ \ C0}.

Note that the minimum(d) is taken over a smaller set compared
to d ′, as C ≤ C0, and hence d ≥ d ′.



Introduction Background and Notations Conditions Code Construction LP Bound Results Summary Reference

Code Construction

In summary, we have the following construction.

Theorem

Let C0 = (n,qn−k ,d0)q2 be a classical additive code that is
contained in its symplectic dual C∗0 . Further, let
C∗ = (n,qn+k+m,d ′)q2 be an additive code containing C∗0 . Then
there exists a hybrid stabilizer code C = [[n, k :m,d ]]q encoding k
qudits and m classical symbols. The minimum distance of C is
given by

d = min{wgt c : c ∈ C∗ \ C0}.
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LP Bound(Method)

In order to obtain bounds on the parameters of hybrid stabilizer
codes [[n, k :m,d ]]q, we consider the homogeneous weight
enumerators of the associated code C0 and its symplectic dual
C∗0 , as well as the code C∗ and its symplectic dual C:

WC0(X ,Y ) =
n∑

w=0

A⊥w X n−wY w , WC∗
0

(X ,Y ) =
n∑

w=0

AwX n−wY w ,

WC(X ,Y ) =
n∑

w=0

B⊥w X n−wY w ,WC∗(X ,Y ) =
n∑

w=0

BwX n−wY w .
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LP Bound(Method)

The weight enumerators of C0 and C∗0 , as well as those of C
and C∗, are related by the MacWilliams transformation, i. e.,

WC∗
0

(X ,Y ) =
1
|C0|
WC0

(
X + (q2 − 1)Y ,X − Y

)
,

WC∗(X ,Y ) =
1
|C|
WC

(
X + (q2 − 1)Y ,X − Y

)
.

Nestedness of the codes implies the condition

0 ≤ B⊥w ≤ A⊥w ≤ Aw ≤ Bw , for w = 0, . . . ,n.

When the hybrid code has minimum distance d , we have

A⊥w = Aw = Bw , for w = 0, . . . ,d − 1.

More details can be found in the proceedings, including tables.
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Results (Code Search)

Search for C = [[n, k :m,d ]]2 codes with distance d ≥ 3.
Union Stabilizer:

1 Start with the self-dual codes from the classification in
Danielsen, Danielsen and Parker [2006].

2 Construct impure quantum codes [[n,1,d ]]2 Then look for
additional vectors for the encoding of classical information,
resulting in an [[n,1:m′,d ]]2 hybrid code.

3 In some cases, the code [[n,1:m′,d ]]2 is in fact a
[[n, k :m′ − k + 1,d ]]2.

CWS Framework:
(a) start with the graph state from the classification in

Danielsen, Danielsen and Parker [2006].
(b) Construct impure code using CWS framework, then look for

additional vectots for the encoding of classical information
by searching for MAX-Clique. Results in a hybrid code with
parameters [[n, k :m′′,d ]]2

(c) ΠiE
†
k El Πj = 0, i 6= j
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Results

Theorem
There exist hybrid codes with the following parameters:

[[7,1:1,3]]2, [[9,2:2,3]]2, [[10,3:2,3]]2, [[11,4:2,3]]2,

[[11,1:2,4]]2, [[13,1:4,4]]2,

[[13,1:1,5]]2, [[14,1:2,5]]2, [[15,1:3,5]]2,

[[19,9:1,4]]2, [[20,9:2,4]]2, [[21,9:3,4]]2, [[22,9:4,4]]2 · · ·

All these codes have better parameters than codes obtained
from the best quantum codes using trivial construction.
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Results (Seven qubits)



X I I Z Y Y Z
Z I I I I I X
I X I X Z I I
I Z I Z I X X
I I X X I Z I
I I Z Z X I X
I I I X Z Z X
I I I Z X X I
I I I I X Y Y



No [[7,2,3]]2

Starting with this impure
code, we obtain a hybrid
code with parameters
[[7,1:1,3]]2.
The additional generator
that is used to encode one
classical bit is given below
the double horizontal line.
We have not found a
[[7,1:2,3]]2 which is not
ruled out by linear
programming.
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Results (Eight qubits)

For eight qubits, there is a quantum code with parameters
[[8,3,3]]2. Using trivial construction, we obtain an optimal
hybrid code with parameters [[8,2:1,3]]2, as well as a code
[[8,1:2,3]]2.
We have not found a hybrid code with parameters
[[8,1:3,3]]2 that might exist.
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Results (Nine qubits)



X I I Z Y Z X X Y
Z I I I I X I I I
I X I Z Y I Y I Z
I Z I I I I X I I
I I X Z Z I I I X
I I Z I Y X I Y I
I I I X X X I Z I
I I I Z I I X Y X
I I I I X I I Z Y
I I I I Z I I X X
I I I I I X X I X
I I I I I Z I Z X
I I I I I I Y X Z



For nine qubits, we found a
hybrid code [[9,2:2,3]]2

Taking all possible
products of the two
generators below the
double horizontal line we
obtain the four translation
operators t(1) = id , t(2),
t(3), and t(4) = t(2)t(3) used
to encode two extra
classical bits.
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Results (10 qubits)

A hybrid code [[10,3:2,3]]2 exists.
Via linear programming it is found that this code is optimal
in the sense that it encodes the maximal possible number
m of additional classical bits among all codes [[10,3:m,3]]2.
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Results (11 qubits)

The first non-trivial hybrid code with distance d = 4 has been
found for eleven qubits. A hybrid code [[11,1:2,4]]2 is given. We
found a hybrid code [[11,4:2,3]]2 as well.
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Results (Appending construction)



the
stabi-
lizer
part
of
[[11,1:2,4]]2

I I

I I I I I I I I I I I Z I
I I I I I I I I I I I I Z
I I I I I Z I X I X X I I
I I I I I I Z Z X X I I I
I X I I I I I I X Y X X X
I I I I I I X I X I I X X
I I I I I I I X Y X Y X X
I I I I I I I X I Y Y X I



Appending two qubits in
the state |0〉 to the impure
quantum code [[11,1,4]]2
given above the double
horizontal line, one ob-
tains an impure code
[[13,1,4]]2. This code can
additionally transmit four
classical bits, i. ,e., one
obtains the hybrid code
[[13,1:4,4]]2 .
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Results (Appending construction)

We generalize this construction by following theorem.

Theorem
Let C1 = [[n, k1,d1]]q ⊂ C2 = [[n, k2,d2]]q be nested quantum
codes. Further, let C3 = [n3, k2 − k1,d3]q be a classical linear
code. Then there is a hybrid quantum code
C = [[n + n3, k1:(k2 − k1),d ]]q with d ≥ min(d1,d2 + d3).

From the nested stabilizer codes [[11,1,5]]2 ⊂ [[11,4,3]]2 and
classical codes [n3,n3 − 1,2]2, one obtains hybrid codes
[[13,1:1,5]]2, [[14,1:2,5]]2, and [[15,1:3,5]]2. Similarly, from
[[17,9,4]]2 ⊂ [[17,13,2]]2, one gets [[19,9:1,4]]2, [[20,9:2,4]]2,
[[21,9:3,4]]2, and [[22,9:4,4]]2.
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Discussion

The code conditions derived here suggest that one should
start with good impure quantum codes.
In order to find a direct construction of hybrid codes with
good parameters, a first step could be to develop methods
to construct good non-trivial impure codes
How?
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Conclusions

We consider the characterization as well as the
construction of quantum codes that allow to transmit both
quantum and classical information, which we refer to as
“hybrid codes”.

We construct hybrid codes [[n, k :m,d ]]q with length n and
distance d , that simultaneously transmit k qudits and m
symbols from a classical alphabet of size q.
Many good codes up to 34 qubits have been found. All
these codes have better parameters than hybrid codes
obtained from the best known stabilizer quantum codes.
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Thank you!
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Questions/Answers



LP Bound(Method)

Additionally, we have:

A⊥0 = A0 = B0 = 1,
n∑

w=0

A⊥w = qn−k ,

n∑
w=0

Aw = qn+k ,

n∑
w=0

B⊥w = qn−k−m,

n∑
w=0

Bw = qn+k+m.

When a hybrid stabilizer code [[n, k :m,d ]]q exists, the linear
program for the variables B⊥w , A⊥w , Aw , and Bw has an integer
solution. For qubit codes, we can strengthen the LP by
additionally considering the shadow enumerator Rains [1999]

SC0(X ,Y ) =
1
|C0|
WC0

(
X + (q2 − 1)Y ,Y − X

)
,

which has to have non-negative integer coefficients. Ref to
Proced
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LP Bound

Using CPLEX V12.6.3.0, we checked whether the integer
program is feasible. More precisely,

we first fix the length n, number of qudits k , and number
M = 2m of classical symbols.
Then we look for the largest minimum distance d for which
the integer program is found to be feasible.
The resulting bounds on the parameters [[n, k :m,d ]]2 are
listed in Table, i. ,e., for fixed parameters n, k , and d , the
largest possible value for m is given.
For n > 14, there seem to be some precision issues, so we
list only the bounds for n ≤ 14.



LP Bound(d = 3)

n
k

0 1 2 3 4 5 6 7 8

5 2 0 – – – – – – –
6 3 0 – – – – – – –
7 4 2 – – – – – – –
8 4 3 1 0 – – – – –
9 5 4 3 1 – – – – –
10 6 5 4 2 1 – – – –
11 7 6 5 4 2 0 – – –
12 8 7 6 5 3 2 0 – –
13 9 8 7 5 5 3 1 0 –
14 10 9 8 7 6 5 3 1 0



LP Bound(d = 4)

n
k

0 1 2 3 4 5 6

5 1 – – – – – –
6 2 – – – – – –
7 3 – – – – – –
8 4 – – – – – –
9 4 – – – – – –

10 5 3 1 – – – –
11 6 4 2 – – – –
12 7 5 4 2 0 – –
13 8 6 5 4 2 0∗ –
14 9 6 6 5 3 2 0



LP Bound(d = 5)

n
k

0 1 2 3

5 1 – – –
6 1 – – –
7 1 – – –
8 2 – – –
9 2 – – –
10 3 – – –
11 4 0 – –
12 4 2 – –
13 5 4 – –
14 6 5 3 1
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